Cycle Of Sound

Waveform:

λ in meters = wavelenght
λ in seconds $=$ period
A = Amplitude

Speed of Sound

The speed depends on the Media (density and elasticity). The harder a medium is the faster can sound travel through. The usual speed of sound through air is more or less $340 \mathrm{~m} / \mathrm{s}$ at sealevel and with $15^{\circ} \mathrm{C}$. It's $0,6 \mathrm{~m} / \mathrm{S}$ faster for every additional degree.

Water: $1500 \mathrm{~m} / \mathrm{s}$
Wood: $3300 \mathrm{~m} / \mathrm{s}$
Steel: 5800 m/s

Amplitude:

The amplitude is the size and strength of vibration. it is expressed in Pascal (Pa, for acoustical) and Volt (V , for Electrical). The volume is related to the amplitude.

Waves:

- Transversal (Sea)
- Longituditional (Sound)

the wavelength is expressed in meters. It's a single cycle in an elastic medium. λ is the symbol.
Wavelength (m/cycle) = Speed of Sound : Frequency
Frequency (Hertz) = Speed of Sound : Wavelength

Sound Theory

Examples:

- How big is the wavelength of 100 or 20 Hz ? (Speed of Sound $=344$)

$$
344: 100=3,44 \mathrm{~m} \quad 344: 20=17,2 \mathrm{~m}
$$

- What's the frequency of a wavelength with 7 or 0,3 meter?

$$
344: 7=49,143 \mathrm{~Hz} \quad 344: 0,3=1146,666 \mathrm{~Hz}
$$

Sine or Cosine Wave

A sine wave is a single basic wave, mostly it exists just in theory. Cosine waveforms are complexe waves as a sum of basic waves.

Other waveforms:

